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Mach's Principle. Part 2. Realization of Dirac's 
Hypothesis in Brans-Dicke Theory with 
Cosmological Term 
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Brans-Dicke theory supplemented with the scalar field potential of the form 
m6/~p =- Gm 6 enables one to realize Dirac's "big numbers" hypothesis. 

Eddington (1931a, b) was the first who noticed the approximate coin- 
cidence of the "big numbers" of microphysics and cosmology: 

Cm2~ ~/ (1) 
m 

O~ ~ H 2 (2) 

here G is the gravitational constant, m is a hadronic mass, H is Hubble's 
constant, e = n.  m, n is the average baryon density in the universe. (Through 
out the paper we use units for which h = e = 1.) It follows also from (1), 
(2) that 

Mob~ ( 1 ) ~ 
m ~ ~ (3) 

(the left-hand side is about 108~ while Gm 2~ 10-4~ where Mobs is the 
observable mass of the matter in the universe. 

Relation (2) holds in some cosmological models, in particular, for 
Friedmann's universe. Meanwhile (1) has no theoretical explanation till 
now. [For more details about the "big numbers" problem, see the books 
by Misner, Thorne, and Wheeler (1973), Weinberg (1972), Zeldovich and 
Novikov (1975).] In accordance with Dirac's (1937, 1938, 1973) hypothesis 
relation (1) should be an identity in cosmological time t, so G should 
depend on t. The well-known attempt to realize Dirac's hypothesis was the 

IProfsoyuznaya St., 142-3, Apt. 115, Moscow 117321, USSR. 

109 

0020-7748/85]0100-0109504.50/0 �9 1985 Plenum Publishing Corporation 



110 Altshuler 

Brans-Dicke theory (Brans and Dicke, 1961, 1962). However "The mys- 
terious relation (1) is not explained at all by the Brans-Dicke theory," as 
in this theory the t dependences of G and H are different and "the relation 
(1) can only be valid for a brief period in the history of the universe" [Cited 
from Weinberg's book (1972), p. 627]. Bekenstein and Meisel (1980) con- 
sidered the problem in various generalizations of the Brans-Dicke theory. 
The author (Altshuler, 1968, 1969) tried to get (1) from quantum consider- 
ations, but did not succeed. 

In the present paper it is shown that Brans-Dicke theory, supplemented 
with the scalar field ~ potential of the form 

V(q~)= Am6/ q~=~ AGm 6 (4) 

(A is a dimensionless constant), possesses necessary cosmological solutions, 
i.e., solutions with G(t)~ H(t)~ lit and (1) is an identity. 

Let the action be 

S= -~oR+0)-- V(~o) + 167rL (m) (-g)l/2d4x (5) 
OX k OX k 

where 0) is the Brans-Dicke dimensionless constant [post-Newtonian experi- 
ments demand Io)1>30, Shapiro, Counselman and Ming (1976)]; L ('~) is 
the matter Lagrangian. (We use here the notations of our preceding paper, 
I.) The action of the form (5) is often considered in view of the derivation 
of Einstein's gravity as the effect of spontaneously broken scale or grand- 
unification symmetries (Fujii, 1974; Minkowski, 1977; Matzuki, 1978; 
Linde, 1979; Smolin, 1979; Zee, 1979, 1980). The Brans-Dicke field is 
identified then with the Higgs field squared and in this case L (m) in (5) 
depends on ~. In this approach the potential V(q~) is assumed to have a 
standard form for spontaneous breaking, i.e., has a minimum at q~ = q~o r 0. 
After the broken vacuum is established the theory is practically indistin- 
guishable from conventional general relativity with gravitational constant 
G = 1/~o = const. 

The picture is changed essentially if V(~) is chosen in the form (4). 
Such a theory has no stable vacuum and perhaps it is not a defect but a 
virtue, and the time evolution of this nonstationary vacuum is just an 
evolution of our nonstationary universe. If so, in grand-unification theories 
only one phase transition is sufficient [e.g., at once SU(5) ~ SU(3)|  U(1)], 
with the baryon-lepton and electroweak breakdown masses of the same 
order of magnitude. The modern "hierarchy" of these mass scales is a result 
of the time evolution of the universe in accordance with Dirac's hypothesis. 
[The possibility of the cosmological origin of mass scales was considered 
also by Terazawa (1981a).] Why the mass scales mentioned above have 
different time dependences is really the question of the origin of the action 
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(5), and it is beyond the scope of the present work. However, some specula- 
tions about a possible origin of the Brans-Dicke theory will be given in 
conclusion. 

Variation of the action (5) over the fields gig, q~ gives the following 
dynamical equations: 

6 
6g ik: q~( Rik - �89  ) = 87rTl~ ~ + ~;~k - g~k [] 

+ - -  g,k'OX . +�89 (6) ~, Ox k 2 o x . j  

2o) to O~ O~ OV 3L ~ 
- - : - R - - - [ ]  ~q- + 16,n---~----= 0 (7) 
6~t) ~ ~9 2 0X n OX n 0~) 

And substituting the trace of (6) into (7) one obtains 

1 [ aV 6L(m)l 
[] ~ -  (3+2to) t.8~rT~m~+2V- ~07+ 16~w--~ J (8) 

(-v(-,~ is the matter energy-momentum tensor; T ~m) its trace.) 
Let us study the simplest case of spatially homogeneous and isotropic 

Friedmann-Robertson-Walker world with space-time interval 

ds2 = dt 2 -  a2(t) d s  (9) 

K = + 1, 0, - 1 for the closed, flat, and open models. The energy-momentum 
tensor is taken to be that of a perfect fluid 

TI7 ~ = (p + ~) U, Uk --Pg,k (10) 

(e ,p ,  and Uk are the energy density, pressure, and velocity four-vector, 
respectively) and L (m) in (5) is supposed to be independent of the scalar 
field ~, i.e., 

TO")~;k = 0 (11) 

For the metric (9) the 00 component of (6) and equations (8), (11) will 
become 

d 2 K 8~-e tomb 2 d•  A m  6 
+ ~2 F - -  (12) 

a 2 ~ a 2 3q~ 6 a ~ 6~0 2 

3d 1 [" 3am 6"] 
r + - -  6b = L 8zr(e -- 3p)+ l (13) 

a 3+2to ~ J 

g + 3 d ( e + p )  =0  (14) 
a 

[Definitions (4), (10) are used; the dot means t derivative.] 
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It is well known that these equations should be supplied with the matter 
equation of  state p = p ( e ) .  

Three particular solutions of (12)-(14) are given below. 
I. Zero-curvature three space (K = 0); matter is absent (e = p = 0). The 

particular solution of equations (12), (13) is 

= L w ( 3 + 2 w ) J  m3t' a = c o n s t .  (15) 

It gives expansion for to> 0 (and therefore A > 0). Solution (15) evidently 
does not exist in the classical Brans-Dicke theory, when A = 0. Equation 
(15) gives for the Hubble's "constant" 

ci wl  
H . . . . .  (16) 

a 3 t  

and relation ( 1 ) (G  - 1 / ~) is fulfilled for A = 6 + 9/w. However, this connec- 
tion of A and w should not be taken too seriously, since relation (1) holds 
only by the order of magnitude. It is more important that (1) is an identity 
in the time variable and this result does not depend on the value of to. 

A simple analysis shows that solution (15) is stable. Taking variations 
of the fields ~(t) ,  a ( t )  in the form 

q~ ~ ~o(1 + ~:(t)), a ~ a ( l + a ( t ) )  (17) 

for small ~:, n, one gets a linear system [see below (22)]. Its general solution 
for the unperturbed fields (15) is 

=ci +c2 
t t '~ 

n ( t )  = no+ + 3 t '~ 

CI, C2, no are arbitrary constants; no gives a trivial change of the constant 
in (15) and hence may be discarded. The decrease in ~, n with time means 
the stability of the solution (15), at any rate with respect to spatially 
homogeneous variations. 

Nonzero spatial curvature (K =+1)  does not change solution (15) 
substantially, because the term K ~  a 2 in (12) decreases with time faster than 
l i t  2 for to >3 .  The same is true for matter; (14) gives an isentropic and 
very fast decrease of e, p [for a from (15) and for any conventional matter 
equation of state]. Hence the e, p terms in the right-hand side of (12), (13) 
are negligible. But then we get a direct contradiction to the relation (2), 
and in general to all observations. The problem is the same as in the 
stationary universe of Bondi and Gold (1948) and Hoyle (1948, 1949)~ but 
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in a softened version since here a ( t )  grows as a power of t, not as an 
exponential function. And in our case, like that of the stationary model, 
too fast decrease in e must be compensated by the continuous creation of 
matter or, in other words, by the continuous transformation of the scalar 
field energy into the matter energy. In principle it is possible if L (m) in (5) 
depends on ~ and matter continuity equation ( 11 ) is canceled. (For example, 
by production of baryons in galaxy nuclei, which in turn are formed because 
of a gravitational instability of spatially homogeneous scalar field ene rgy  
distribution.) However, it is hardly possible that the observable galaxies 
distribution and the observable spectrum of the microwave radiation can 
be produced in such a manner (see about it in Weinberg, 1972). 

II. Closed or open model (K = + 1) ; e = p = 0. The particular "vacuum" 
solution of equations (12) and (13) is 

= ~ m 3 t ,  a = \ - s  �9 t (18) 

This solution exists for the closed model (K  = 1) if to > 0, ;t > 0 and for the 
open model (K = -1 )  if to <0 ,  h < 0  (note that [tol >> 1). The general solution 
of the linear system (22) for small variation (17) follows the power law 

~ t ' ,  c~ ~ t"  

where the power degree is found from the cubic equation 

n3 + 4n2+ (9 - 2to)n + (6 -2 to)  = 0 

It is easy to show that for to < 0 all three roots have negative real parts, i.e., 
in this case all linear independent solutions of (22) decrease with time. 
Hence the open model (18) is stable. On the contrary, the closed model 
(18) (when to > 0) is unstable. 

Relation (1) for the model (18) is fulfilled but (2) is evidently wrong 
as e decreases too fast (e.g., e - t - 3  for the "dust"  matter). The continuous 
creation of  matter should be supposed here as well as in the model (15). 

III. In the more conventional and realistic approach the direct interac- 
tion of matter and scalar field may be essential only in the initial superdense 
stage of the Big Bang. Later the continuity equation (11) becomes true and 
in particular, for the "dust"  matter we have e - a -3. In this case, as it was 
noted by Dirac (1937, 1938, 1973), the simultaneous validity of (1), (2) 
demands 

1 1 
- ~ ~ t ,  a ~ t 1 / 3 ,  8 ~ - -  (19) 

G t 

It turns out that for the flat model (K = 0) the system ( 12)- (14) possesses 
solution of the type (19) if constants to, A are negative. This particular 
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solution for the general matter equation of state p = y e  (y = const) is 

3h ] 1/2 
2+6v+ (l_v )J (1 + y)m3t 

a = const �9 t 1/3(t+y) (20) 

1 - t o ( l + y )  ~p 1 
e = 8~r(1 + y)2 " t--i~t 

Hence for y = 0  the Dirac theory (19) follows: 

[ 3h ~1/2 3t t 1/3 
= m , = c o n s t .  

l - t o (  3A ~i/2m 3 (21) 

e =  8r \ 2 + 3 t o ]  -}-- 

As is seen, the positiveness of the energy density e demands to < 0  
(Itol >> 1) and therefore h <0.  Let us show that in spite of the "wrong" sign 
(to < 0) of the scalar field kinetic term in the action (5) and in spite of the 
unboundedness of V(~0) from below (h < 0  means V ~ - o o  for ~p~0) the 
solution (21) is stable with respect to small variations (17) of the fields 
~o(t), a(t)  and the small energy density variation [e--> e + el (t)]. Variation 
of equations (12)-(14) gives for d, ~:, el the following linear system (p = 0; 
H = a / a ;  ~b = ~b/q~): 

2K 
(2H + ~b)& ---a- T a = 

~+ (2~b +3H)~+3~bd = - -  

8~el + (to \ .  [ 8 ~ e  Am6\ 

1 [8'Ire1 [8,rre 6 A m 6 \  "] 

(3 +2to) L-V-- +-7)eJ  (22) 

gl +3Her +3e& = 0 

This system was used above for investigation of stability properties of 
solutions (15), (18). For the unperturbed particular solution (21 ) the general 
solution of the system (22) has the form 

a ~ t n, ~ t n, e I ~ t n-I (23) 

where pG-::er degree n should be found from the following cubic equation: 

na+2n2 3 to2-3 to -  5 3to2- to - 2  
n - 0  (24) 

3+2to 3+2w 

For to < - 3 / 2  the real parts of all the three roots are negative, therefore 
time evolution will inevitably lead to a<< 1, ~:<< 1, el<< e and hence the 
solution (21) is solved, in spite of to <0,  h <0.  
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We should note that the comparison of the Brans-Dicke post- 
Newtonian parameters (Misner et al., 1973, p. 1072) with experiment does 
not say anything about the sign of to. For to < 0 the contribution to the 
scalar field from the near-by matter is negative, but it does not mean that 
the gravitational constant is negative in general cosmological solution [see, 
e.g., (21)]. The Brans-Dicke theory with t o<0  was considered also by 
Miyazaki (1979). However, the question of consistency of the action (5) 
with to < 0, h < 0 needs a further investigation, in particular in connection 
with Mach's principle (see preceding paper I). 

It is easy to show that relation (3) is fulfilled in the model (21). 
Calculation of the observable mass of the universe by the familiar formula 
(Landau and Lifshitz, 1962) 

fo' Mobs = 4~r 6a3x 2 dx (25) 

(parameter ~7 is defined by dt = adrl) gives for (21) 

M o b s = 9 ( 1  . [  3A \1/2 - t o )~2 -T~w)  m3t 2 (26) 

From (26), (21) it follows that (3) holds for any time. 
The whole consideration above could be carried out in another scale 

gauges, e.g., in the gauge of constant G and variable particle mass m. In 
this gauge solutions (15), (18), (21) will lead to m decreasing with time by 
the law m ~ t - 1 / 3 .  

What is the observational status of Dirac's theory (19) and therefore 
of the model (21) ? The age of the universe to = 1 / 3 Ho ~ 6 • 109 years (Ho 
is the observable Hubble constant, Ho I = 1.8 • 10 years). The logarithmic 
time derivative of the gravitational constant is 

1~- ]=3Ho~2X10  -1~ (yr) -1. 

These numbers are incompatible with experiment, or at any rate are 
on the edge of the allowable (Misner et al., 1973 ; Weinberg, 1972; Zeldovich 
and Novikov, 1975). The model (18), where a - t ,  gives ]G/G[=Ho ~- 
6 • 10-1~(yr)-~; it is not in contradiction with observations so far. In the 
solution (15) G varies even more slowly [IG/G=3Ho/tO,  cf. (16)]. But 
models (15), (18) have their own problems, as was already mentioned. 

Perhaps the theory described by equations (4), (5) needs a modification. 
In this connection the question arises: what may be a more fundamental 
scheme that results in the action (5) in some phenomenological approxima- 
tion? The following speculation about the possible origin of the Brans-Dicke 
theory out of the quantum principles probably may be useful. 
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In 1967 Sakharov (1967) proposed identifying Einstein's gravitational 
action with that of the quantum fluctuation of matter (cf. also Misner et 
al., 1973; Zeldovich and Novikov, 1975). This idea, called Pregeometry, 
was developed farther (Adler, 1980a, b; Akama, 1981; Terazawa, 1981b;). 
Sakharov (1975) showed that the quartic and quadratic ultraviolet divergen- 
ces are absent in the effective quantum action and the gravitational constant 
is defined by the masses of  elementary quantized fields. This means, e.g., 
that the elementary Fermi field Lagrangian Lo = ~ t ( ~ _ ~ _  m)4' being con- 
sidered as functional of two external fields gik(X), m(x) will give a scale- 
invariant quantum action for these fields: 

F60mOm ] 
S ~ [. - ~  OXk ~ mZR (27) 

This result is necessarily obtained when the scale-invariant regularization 
method is used. In the scale gauge m = const the unphysical version of 
Einstein's theory results with the Planck mass being equal to the elementary 
fermion mass. 

However, the situation may be quite different if the elementary 
Lagrangian depends on two or more external scalar fields, a Lagrangian 
containing several Higgs fields or a neutrino Lagrangian with Dirac (m) 
and Majorana (M) masses. (The consideration is purely illustrative and 
hence is oversimplified.) In this case, besides the terms of the form (27) 
the quantum effective action for the fields gik(X), re(x), M(x) should contain 
the scale-invariant kinetic terms of another form. Dimensional consider- 
ations suggest that the logarithmically divergent kinetic part of the action 
must become 

S - \  OX kOXkt-m2R + 60X kOXk ~M2R 

+ const �9 ( m 2 + M  2) 0 ln(M/m) 0 ln(M/m) (28) 
OX k OXk 

If M >> m (28) transforms into the action of the Brans-Dicke theory with 
the scalar field determined by the largest of the two masses (~ ~- M2). To 
the author's knowledge, such a program of deduction of the Brans-Dicke 
theory has not been worked out so far. If  the action is symmetrical in the 
mass field [as, e.g., (28) is], then the growing difference of  the masses in 
the process of  the cosmological evolution may be the result of  instability 
of the m ~ M symmetric initial state, i.e., of  some spontaneous breakdown 
of this symmetry back at the "quantum era" (when M = m). 

Nothing was said until now about the origin of the potential (4). The 
cosmological term (vacuum energy) problem is one of the most difficult in 
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modern theoretical physics. From the quantum point of view (4) is the finite 
correction to the potential terms in the quantum effective action (28) caused 
by the gravitational interaction of elementary fields (mass m) (Zeldovich, 
1968), or, perhaps, by exchange of a superheavy gluon (M2x ~ q~). In some 
future supergravity the potential (4) will probably be the first non vanishing 
term of quantum vacuum energy. The purpose of the present paper was to 
study the cosmological consequences of this possible fact. 
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